

 Navigation

 	
 index

 	
 next |

 	bjoern 0.1 documentation

Welcome to bjoern’s documentation!

Bjoern is a platform for the analysis of binary code. The platform
ports, extends, and reimplements concepts of the source code analysis
platform joern. It generates a graph representation of native code
directly from output provided by the open-source reverse engineering
toolchain radare2, and stores it in an OrientDB graph database for
subsequent mining with graph database queries.

Contents:

	Overview
	Octopus

	Bjoern-Radare

	Bjoern-plugins

	Bjoern-lang and Octopus-lang

	Bjoern-Shell

	Installation
	System Requirements and Dependencies

	Installing radare2

	Building bjoern (step-by-step)

	Installing the bjoern-shell

	First steps (Tutorial)

	Database Contents

	CSV Import
	Usage

	Configuration

	Input Format for Nodes

	Input Format for Edges

	Shell Access (Gremlin)
	Usage

	Configuration

	Plugins
	Execution of Plugins

	The Function Export Plugin

	The Instruction Linker Plugin

	Writing Plugins

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

Overview

The Bjoern platform consists of a server component, and a collection
of client utilities which can be used to query and update the database
contents. All heavy computation is performed in threads on the server
side, which are spawned in response to client requests issued via a
HTTP REST API. These threads can directly access the database using a
lightweight binary protocol (“plocal”), a protocol that introduces
only low overhead when compared to standard HTTP-based access
protocols.

Access to the database is synchronized to allow multiple
users and long-running analysis tasks to be executed in parallel. For
multiple user access, bjoern implements a groovy shell server. This
makes it possible for users to execute commands on the server side,
disconnect, and come back later to view results, similar in style to
the way GNU screen sessions are used on shared servers.

At heart, the Bjoern is an OrientDB server instance, extended with
plugins that are loaded at startup. These plugins expose the
platforms functionality via a REST API, which makes it possible to
invoke server functionality via HTTP requests. Bjoern-server extends
the language-agnostic server component Octopus with plugins for binary
analysis and provides a language for binary code analysis. In the
following, we describe the main components Bjoern is composed of.

Octopus

Octopus is a server component that provides shell access to an
OrientDB graph database. It allows arbitrary property graphs to be
imported from CSV files that describe nodes and edges. This is
achieved using the OrientDBImporter, a generic library for batch
importing large property graphs into OrientDB.

In summary, octopus offers the following two primary features.

	Import of CSV files. The CSV importer enables the user to
perform batch imports of graphs given in CSV files. It is a generic
component implemented to allow fast import of any property graph into
an OrientDB graph database. The importer runs in a thread on the
server-side to access the database without the overhead introduced
by OrientDB’s access protocols. Several databases can be created in
parallel using the importer plugin.

	Shell Access. Octopus offers a server-side shell that
provides database access via the general purpose scripting language
Groovy and the traversal language Gremlin. Like importers, shells
run as threads inside the server, giving them access to the database
with low overhead. Multiple users can spawn shells on the server
side to work on the database in parallel.

	Execution of plugins. Octopus offers a plugin interface that can
be used to extend functionality at runtime. In particular, this
allows language-dependent analysis algorithms to be executed on the
graph database contents.

Bjoern-Radare

Bjoern-Radare generates graph-based program representations from
binaries and outputs them in a CSV format. The resulting files can be
imported into the octopus server. Under the hood, bjoern-radare uses
radare2 to perform an initial automatic analysis of a binary and
extract symbol information, control flow graphs, and call
graphs. Moreover, it translates machine code into radare’s
intermediate language ESIL to allow platform independent analysis of
code.

Bjoern-plugins

Bjoern-plugins are a set of plugins that turn Octopus into a platform
for binary code analysis. On the one hand, these plugins allow
structures such as control flow graphs of functions to be exported, on
the other, they perform active computations on the database contents
to generate new nodes and edges.

Bjoern-lang and Octopus-lang

Bjoern-lang and Octopus-lang provide a domain specific language for
binary code analysis and generic traversal of property graphs
respectively. These languages are realized as so called steps for
the graph-traversal language Gremlin.

Bjoern-Shell

Bjoern-shell provides user-friendly access to the database via a
command line shell. It features a working environment with convenient
features like code completion, reverse search, and in-shell
documentation. It also features an awesome banner. Multiple
bjoern-shells can be used in parallel. Moreover, it is possible to
detach from a bjoern-shell and re-attach to it later on.

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

Installation

System Requirements and Dependencies

	A Java Virtual Machine 1.8. Bjoern is written in Java 8 and does
not build with Java 7. It has been tested with OpenJDK 8 but should
also work with Oracle’s JVM.

	Radare2 The primitives provided by the radare2 reverse
engineering framework are employed to dissect and analyze binary
files to obtain graph-based program representations from them.

	OrientDB 2.1.5 Community Edition. The bjoern-server is based on
OrientDB version 2.1.5 and has not been tested with any other
version. You can download the correct version
here [http://orientdb.com/download.php?email=unknown@unknown.com&file=orientdb-community-2.1.5.tar.gz] .

	Bjoern-shell [Optional.] The bjoern-shell is a convenient tool
to query the database contents and develop new query-primitives
(so-called steps) that can be re-used in subsequent queries.

Installing radare2

Please follow the instructions here [http://www.radare.org/r/down.html] to install radare2, and make
sure the programs radare2 and r2 are in the path.

Building bjoern (step-by-step)

git clone https://github.com/fabsx00/bjoern
cd bjoern
gradle deploy

Installing the bjoern-shell

git clone https://github.com/a0x77n/bjoern-shell
cd bjoern-shell
python3 setup.py install
bjosh

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

First steps (Tutorial)

The following tutorial illustrates basic usage of bjoern. You will
learn how to start the server, import code, spawn a bjoern-shell and
run queries against the database.

	Begin by starting the bjoern-server:

./bjoern-server.sh

This starts an orientDB server instance, along with the OrientDB
Studio on port 2480. Studio provides a useful interface to explore the
database contents (see http://orientdb.com/docs/last/Home-page.html).

	In another shell, import some code

./bjoern-import.sh /bin/ls

This will start a thread inside the server process which performs the
import. You will see an ‘Import finished’ message in the server log
upon completion.

	Create a shell thread using bjosh

bjosh create

	Connect to the shell process using bjosh

bjosh connect

	Get names of all functions (sample query)

 _ _ _
| |__ (_) ___ ___| |__
| '_ \| |/ _ \/ __| '_ \
| |_) | | (_) __ \ | | |
|_.__// |___/|___/_| |_|
 |__/ bjoern shell

bjoern> queryNodeIndex('nodeType:Func').repr

	Get all calls

getCallsTo('').map

	Get basic blocks containing calls to ‘malloc’

getCallsTo('malloc').in('IS_BB_OF').repr

	Walk to first instruction of each function

getFunctions('').funcToInstr().repr

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

Database Contents

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

CSV Import

The CSV importer allows property graphs to be imported into the graph
database. It requires nodes and edges to be specified in a CSV
format.

Usage

The importer can be invoked via an HTTP GET request or via the utility
‘octopus-csvimport.sh’ in projects/octopus.

The HTTP GET request can be issued with curl as
follows

curl http://localhost:2480/importcsv/<nodeFilename>/<edgeFilename><dbname>/

where nodeFilename is a CSV file containing nodes, edgeFilename is a
CSV file containing edges, and dbname is the name of the database to
import into.

Alternatively, the script ‘octopus-csvimport.sh’ can be invoked as follows

projects/octopus/octopus-csvimport.sh [dbname]

where dbname is the name of the database. The tool will automatically
impor the files ‘nodes.csv’ and ‘edges.csv’ if present in the current
working directory.

Configuration

none.

Input Format for Nodes

Nodes are described using a CSV file format, where the first line
describes the row format (CSV header), and the remaining lines contain
the actual nodes. The tabular character is used as a
deliminator. Double-quotes can be used to enclose values of fields
that contain newlines or tabs.

The CSV header has two mandatory fields: command, and key.

The command field specifies the action to perform for this
node. The following commands are currently supported:

	Name
	Description

	ANR
	Add node, replacing any existing node with the same key.

	A
	Add node, creating an alternative key if a node with this key already exists. The alternative key is generated by adding an underscore followed by a number to the key.

The key field contains an identifier for the node. The key can be an
arbitrary string. The strategy to follow when a node with this key
already exists depends on the command.

The remaining fields specify the names of node properties. As an
example, please take a look at nodes.csv as generated by the
bjoern-radare.sh tool.

Input Format for Edges

Edges between nodes are described in a CSV file, where nodes are
referred to by their keys. The first line of the CSV file (CSV header)
describes the row format.

The CSV header has three mandatory fields: sourcekey, destkey, and
edgeType.

The sourcekey and destkey fields specify the key of the edge’s
source and destination node respectively, while edgeType specifies
the type of the edge as an arbitrary string.

The remaining fields are the names of edge properties. As an example,
please take a look at edges.csb as generated by bjoern-radare.sh.

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	bjoern 0.1 documentation

Shell Access (Gremlin)

Octopus provides access to Gremlin shells that can be used to
query the database. Shells run inside the server process and can
therefore make use of the ‘plocal’ binary protocol for efficient
access.

Usage

The shells currently running inside the server process can be listed
using the listshells command as follows:

curl http://localhost:2480/listshells

A new shell can be created using the shellcreate command as follows.

curl http://localhost:2480/shellcreate/[dbname]

where dbname is the name of the database to connect to. By default,
a shell for bjoernDB is created.

Configuration

none

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	bjoern 0.1 documentation

Plugins

Plugins are the best way to extend the Octopus server with custom functionality. You can write own plugins or
to use the existing ones.

Execution of Plugins

Plugins are invoked via HTTP POST requests. The body of the request message contains the plugin’s configuration in JSON
format. It includes information about how to execute the plugin (required by all plugins) and additional settings for
the plugin (dependent on the specific plugin). For example

{
 "plugin": <name of the plugin>
 "class": <class implementing the IPlugin interface>,
 "settings": <JSON object containing plugin specific settings>
}

The configuration file is used by the executeplugin command of the Octopus server, which loads and executes the plugin.
The POST request can be issued using curl

cat plugin.json | curl -d @- http://localhost:2480/executeplugin/

where plugin.json contains the configuration.

The Function Export Plugin

The function export plugin can be used to export database content at function level. Functions consist of a
function node, basic blocks and instruction nodes along with edges between those nodes. It is possible to export
functions as a whole or only parts of a function, e.g., the control flow graph.

Configuration

The plugins configuration file contains the following data:

{
 "plugin": "functionexport.jar",
 "class": "bjoern.plugins.functionexporter.FunctionExportPlugin",
 "settings": {
 "database": <database name>,
 "format": "dot"|"graphml"|"gml",
 "destination": "<output directory>,
 "threads": <number of threads to use>,
 "nodes": <JSON array of node types>,
 "edges": <JSON array of edge types>
 }
}

Note

Edges are only exported if the head and the tail is exported as well.

Example

To extract the control flow graphs of all functions of a database named ls you can start with the settings below:

{
 "plugin": "functionexport.jar",
 "class": "bjoern.plugins.functionexporter.FunctionExportPlugin",
 "settings": {
 "database": "ls",
 "format": "dot",
 "destination": "some/path/you/like",
 "threads": "4",
 "nodes": ["BB"],
 "edges": ["CFLOW_ALWAYS", "CFLOW_TRUE", "CFLOW_FALSE"]
 }
}

The Instruction Linker Plugin

The instruction linker plugin connects the instructions of a function accordingly to the execution order and the flow of
control. This is useful to obtain control flow information at the level of instructions as opposed to basic blocks.

Configuration

The plugins configuration file contains the following data:

{
 "plugin": "instructionlinker.jar",
 "class": "bjoern.plugins.instructionlinker.InstructionLinkerPlugin",
 "settings": {
 "database": <database name>,
 }
}

Writing Plugins

All plugins must implement the IPlugin interface (octopus.server.components.pluginInterface.IPlugin). The interface
specifies the following four methods:

	Method
	Description

	configure
	This method is used to configure the plugin. The only argument passed to this method is the JSON
object specified by the settings attribute of the configuration file.

	execute
	This method contains the main code of the plugin.

	beforeExecution
	This method is called before the execution of the plugin.

	afterExecution
	This method is called after the execution of the plugin.

The methods are invoked in the following order: configure, beforeExecution, execute, afterExecution.

Most plugins will require access to some database. The class OrientGraphConnectionPlugin
(bjoern.pluginlib.OrientGraphConnectionPlugin) implements the IPlugin interface and opens a connection to a graph
database in beforeExecution. The connection is closed in
afterExecution. The name of the database is read in configure, the corresponding attribute must be named database.
The class OrientGraphConnectionPlugin
provides two additional methods to acquire a graph instance: `getGraphInstance and getNoTxGraphInstance
for non-transactional graphs and transactional graphs, respectively.

Note

If you override any other method of the IPlugin interface, make sure you don’t forget to call super.

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	bjoern 0.1 documentation

Index

 Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		bjoern 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Fabian Yamaguchi.
 Created using Sphinx 1.3.5.

_static/up.png

